1、12 3 2等边三角形 二 知识回顾 1 等边三角形的性质1 等边三角形的内角都相等 且都等于60 2 等边三角形是轴对称图形 有三条对称轴3 等边三角形各边上中线 高和所对角的平分线都三线合一 1 三边相等的三角形是等边三角形 2 三个内角都等于60 的三角形是等边三角形 3 有一个内角等于60 的等腰三角形是等边三角形 2 等边三角形的判定 探究新知 含30 直角三角形性质探索 在 AB 中 是底边 上的高 探究 与 之间的数量有什么关系 分析 是等边 AB 的高 AB 关于直线 对称 在一个直角三角形中 如果一个角是30 那么30 的角所对的直角边与斜边又有什么关系呢 如图右 ABC中
2、A 30 B 0 问 与 有怎样的关系 由上述的探究便知 你还有其它的方法证吗 定理 在直角三角形中 如果一个锐角等30 那么 它所对的直角边等于斜边的一半 即在Rt ABC中 如果 B 0 A 30 那么 举例如下 1 在Rt ABC中 如果 B 0 A 30 AB 4 求BC之长 解 由定理知识得BC 1 2AB而AB 4 BC 2 2 在Rt ABC中 如果 B 0 A 30 CD是高 1 BD 1 则BC AB各等于多少 2 求证 BD 1 2BC 1 4AB解 1 由已知可求得 B D 30 于是在Rt ADC与Rt BDC中用本定理得BC 2 AB 4 2 在Rt ADC与Rt B
3、DC运用本定理BD 1 2BCBC 1 2AB BD 1 2BC 1 4AB 3右图是屋架设计图的一部分 点D是斜梁AB的中点 立柱BC DE垂直于横梁AC AB 7 4m A 30 立柱BC DE要多长 解 DE AC BC AC A 30 由上述定理可得 BC 1 2AB DE 1 2AD BC 1 2 7 4 3 7 m 又AD 1 2AB DE 1 2AD 1 2 3 7 1 85 m 答 立柱BC DE分别要3 7m 1 85m 1在Rt ABC中 0 B 2 问 B A各是多少度 边AB与BC之间有什么关系 练习 2如图 厂房屋顶钢架外框是等腰三角形 其中AB AC 立柱AD BC 且顶角 BA 100 BAD AD各是多少度 1如图 在 ABC中 C 90 B 15 AB的垂直平分线交BC于D 交AB于M 且BD 8 求AC之长 作业题 2如图 在 ABC中 AB AC A 120 AB的垂直平分线MN交BC于M 交AB于N 求证 CM 2BM 1讲了一个含30 的直角三角形的定理 2讲了三个例题 3做了两道练习题 4最后给同学们布置了两道作业题 小结 谢谢观看 制作 罗时勇